Soaking up the heat

Phase Change Materials in Construction

Ian Biggin
Director, Phase Energy Ltd.
Learning aims & objectives

- Gain a better understanding of what phase change materials (PCMs) are and what they aren’t
- Appreciate what they can do and what they can’t
- What products are available now
- How and where they could be used to store/release heat and modify building temperature (to give improved thermal comfort and energy efficiency)
Agenda

- Speaker introduction
- Introduction to BASF
- What are PCMs?
- How do they work in construction?
- Where to use PCMs?
- Benefits
- Problems & solutions
- Quality assurance
- Sustainability
- Case studies
- Summary & learning outcomes
- Contact details etc
Speaker introduction

- Ian Biggin – Phase Energy Ltd.
 - Chemist by profession, many years in senior technical and marketing roles in major companies
 - ~15 years working on PCMs; from raw materials to applications & testing
 - PE is a consultancy specialising in PCMs, including application development
 - PE provides support on PCMs to a number of clients, including BASF’s UK technical support on PCMs
BASF – The Chemical Company

- 112,000 employees at end of 2015
- 6 "Verbund" sites
- About 380 production sites worldwide
- Sales of €70.4 billion in 2015
- €1.95 billion on R&D in 2015
- Produce Micronal® PCM microcapsules at Ludwigshafen site
What are PCMs?

- PCMs are latent (hidden) heat storage materials i.e.:
 - They store or release large amounts of heat as they change phase (solid ↔ liquid)
 - They store or release heat without changing temperature

![Image of PCM phase change]

- 1kg at 0°C
- 334 kJ/kg
- 1kg at 0°C
- 334 kJ/kg
- 1kg at 80°C
What are PCMs – “clever” thermal mass!

- Idealised graph

PCMs are thermal mass, NOT insulation!
What are PCMs?

- PCMs can be waxes or salt hydrates
 - Waxes can be petrochemical (paraffins) or bio-based (acids, alcohols, esters)
 - Salt hydrates e.g. Na$_2$SO$_4$.10H$_2$O

- Some properties of a good PCM:
 - Melt/freeeze over a narrow temperature range (suitable for the proposed application e.g. between 20-24°C)
 - Have a high enthalpy (thermal energy storage capacity)
 - Be suitable for the proposed application (e.g. longevity)
 - Must be cost effective
What are PCMs? - waxes

- Tend to be used in an encapsulated (trapped) form
 - Either micro or macroencapsulated

- Microencapsulated – tiny wax particles trapped in a tough polymer shell
 - Very tough; withstand sawing, drilling etc.
 - Often added to gypsum, clay panels etc.

- Macroencapsulated – in metal heat exchanger plates, absorbed into expanded graphite panels etc.
What are PCMs – salt hydrates

- Salt crystals (e.g. sodium sulphate, calcium chloride etc) which include molecules of water within their crystal structure
- When the salt hydrate reaches its melting point, the water molecules move away from the crystal structure and the solid crystals become a liquid
- When the liquid salt solution cools, the water molecules move back around the salt crystal structure and the liquid becomes a solid again
Comparison

- **Waxes**
 - Generally stable with predictable properties (30+ years lifetime)
 - Cost varies (more expensive for speciality PCMs)
 - Usually used in sealed containers (micro/macro encapsulated)
 - Microencapsulated PCMs easily incorporated into wallboards, tiles etc.

- **Salt hydrates**
 - Usually formulated to achieve required thermal properties and deal with issues such as supercooling and separation (salts from water)
 - Generally don’t last as long as waxes
 - Can be corrosive and/or irritant
 - Utilised in sealed containers (vessels must be liquid & vapour tight)
How do they work in construction?

- PCMs provide thermal mass
- Unlike concrete, brick etc. they provide most of their effect over a narrow temperature range
- Act like lightweight structure above and below their melt_freeze temperature range
- Act like a heavyweight structure around the "comfort range"
- Heat up and cool down quickly but buffer effectively in the comfort range
How do they work in construction?

Comparison Air Temperatures [°C]

- PCM is trapping heat from room
- Recrystallization to recharge PCM

Rule of thumb:
≥3kg PCM/m² floor space

source: FHG ISE
Where to use PCMs? - buildings

- Microencapsulated wax PCMs
 - Clay wallboards
 - Gypsum panels
 - Plasterboard
 - Ceiling tiles
 - PU foam panels
 - Gypsum plaster
 - Acoustic plaster
Where to use PCMs? - buildings

- Macroencapsulated wax or salt hydrate PCMs
 - In heat exchanger plates (e.g. for heat or coolth storage)
 - In foil packets, plastic or stainless steel balls etc.
Should they be used by themselves?

- PCMs, like sensible thermal mass, should be used in conjunction with other temperature control measures e.g.:
 - Insulation
 - Shading
 - Orientation
 - **Ventilation**
 - Ideally this should be night-time purge ventilation (3 – 5 ach) not just MVHR (0.3 - 0.5 ach)
 - The heat stored in any (e.g. PCMs, concrete etc.) thermal mass should be released overnight
Getting it wrong in Westminster

- Single aspect apartments
- No cross ventilation
- Night purge ventilation difficult
 - Security
 - External noise
 - Pollution etc.
- Any internal thermal mass often decoupled from room air (e.g. use of drywall), or doesn’t cool
- Average, overnight bedroom temp. 27–29°C (Sept. 2006); average external temp. 15-18°C
Where to use PCMs?

- For any thermal mass to be effective it should be in contact with room air.

<table>
<thead>
<tr>
<th>Wall construction</th>
<th>U-value W/m²K</th>
<th>Admittance W/m²K</th>
<th>Kappa value kJ/m²K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plaster 13 mm</td>
<td>2</td>
<td>4.26</td>
<td>169</td>
</tr>
<tr>
<td>Brick 100 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brick 100 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasterboard 13mm</td>
<td>0.24</td>
<td>0.73</td>
<td>9</td>
</tr>
<tr>
<td>Mineral wool (quilt) 150 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plaster 13 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brick 100 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brick 100 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drywall 13 mm</td>
<td>0.19</td>
<td>1.86</td>
<td>9</td>
</tr>
<tr>
<td>Cavity 10 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerated block 100 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cavity 150 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Mineral wool)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brick 100 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are estimates based on the Arup/Concrete Centre software.
Where to use PCMs in buildings?

- Various options
Where to use PCMs in buildings?

- Walls
Where to use PCMs in buildings?

- Ceilings – e.g. plasterboard or ceiling tiles with plenum
Where to use PCMs in buildings?

- Via PCM heat exchanger plates (night)
Where to use PCMs in buildings?

- Via PCM heat exchanger plates (day)
Cool storage

Courtesy of Monodraught

Courtesy of Actimass
Removing stored heat from thermal mass

- Heat stored in any thermal mass (PCM, concrete etc.) should be removed, usually at night

- Ventilation (image courtesy of LTG)

- Use of water cooling
 (Image courtesy of Emco)
Where to use PCMs?

- Wherever thermal mass would be beneficial (e.g. lightweight construction, refurbishment)
- Where heat/coolth needs to be stored for use at a different time (or place) e.g.:
 - Solar heat acquired during the day stored and used at night
 - Heat from ASHPs stored for use during peak electricity periods
 - Night-time coolth stored and used during daytime periods in e.g. ventilation systems
 - Heat/coolth from off-peak electricity stored and used later
 - Waste heat from industrial processes for office etc. heating

PCMs act as thermal batteries, storing and releasing heat
Benefits – why use PCMs?

- Provide “intelligent” thermal mass
 - Maximum effect over the chosen temperature range (acts like lightweight structure above and below chosen temperature range; heavyweight structure within that range)

- Choice of melting points available (e.g. 23°C, 25°C)

- Ideal for lightweight structures where provision of thermal mass is difficult

- Replace thermal mass where existing concrete etc has been decoupled from the room air (e.g. due to IWI, use of drywall, suspended ceiling etc)

- Use only in the most appropriate places within a building (e.g. near heat sources!)

- Some products (e.g. ceiling tiles) can be taken with you if you move
Problems and solutions

- Fire (waxes) – overcome by correct design of wallboard, tile etc (products must pass relevant flammability tests)
- Stability/longevity of salt hydrate systems (including packaging)
- Cost effectiveness
 - But provide potential overall cost benefits
- Lack of approved thermal modelling software (DSM)
 - PCM module in Design Builder (Level 5 due soon, also NRGsim work)
 - Currently there are no regulations which apply specifically to PCMs (other than those which relate to their chemical H&S status)
 - Any PCM-based product must pass all the relevant tests for that product type (e.g. wallboard, ceiling tiles etc.)
Quality assurance

- QA company in Germany, RAL
 - Standardised procedures for qualifying PCM performance and durability
 - Quality criteria include:
 - Latent heat storage capacity
 - Melt/freeze cycling stability (will it last for 30+ years?)
 - Thermal conductivity
 - To qualify for Class A label the PCM must withstand 10,000 melt/freeze cycles without significant change in enthalpy (heat energy storage)
Sustainability – microencapsulated wax

- Production of 1kg mPCM generates <1.8 kg CO₂.
- Basic figure for PCM quantity in a room is 3 kg per m² floor space.
- 10 m² of a product (with 3 kg/m² mPCM) can store up to 1 kWh energy.
- Inclusion of mPCM in 10 m² of a building product causes 54 kg additional CO₂, compared to standard building product.

- The mPCM will perform constantly over 30 years and more (RAL approval).
- By storing 1 kWh of cold using night ventilation during 100 days per year over thirty years, 10 m² of PCM (30kg) will save 3 MWh of A/C-energy treatment (thermal).
- If this cooling energy were instead supplied by a split unit, this would require at least 1 MWh of electrical energy (COP ~ 3).
- The production of 1 MWh of electrical energy generates approximately 570 kg CO₂.

Ratio of CO₂ avoidance = 1:10
Case study - BSRIA

Test Conditions
Structure - Insulated Thermal Test Chamber

HVAC System:
1. Displacement ventilation;
2. Overhead air;
3. Overhead air ducted return

Location: BSRIA, Bracknell, UK
Room Size: 16 m²
Ceiling Coverage - mPCM tiles: 0, 30, 57 %
Thermal Storage: 0, 662, 1,260Wh
Applied Cooling Load: 30, 60 W/m²
Air Circulation Rate: 2.5, 4.1, 11.1 l/s m²
Purge Temperature: 14, 18 °C

Displacement Ventilation System
• 662Wh of thermal storage delayed the operation of the air conditioner by 1:20 hours with a 30 W/m² load
• 1,260Wh delayed this by 4:27 hours.
• The PCM tiles typically reduced temperature variations on the ceiling to +/- 1°C.

Courtesy of Armstrong
Case study – office, Central London

Test Conditions

Structure – Midrise masonry building

HVAC System: Split system, ventilation fan
Location: London, UK
Room Size: 47.5 m²
Ceiling Coverage (mPCM tiles): 60%
Thermal Storage: 3,900 Wh
Applied Cooling Load: Up to 55 W/m²
Air Circulation Rate: Up to 13 l/s m²
Purge Temperature: Varies, based on night time outside air temperature
Energy Savings: 20 – 70% (depending on conditions)

Courtesy of Armstrong
Summary & learning outcomes

- PCMs are an “intelligent” type of thermal mass
- They are not a type of insulation (but they will work well in combination)
- They allow structures to warm up and cool down quickly but buffer the temperature within a “comfort temperature range”
- Like all thermal mass, they absorb heat but this should be released overnight using cool night air (purge ventilation), water (e.g. capillary mats) or chilled air (via off-peak electricity)
- They should be part of a well-designed, system-based approach to thermal management
- They can also be effective at storing heat/cold for ASHPs, solar thermal etc
Contacts

UK

- Ian Biggin, Phase Energy Ltd: 07785 245 880; ian.biggin@phase-energy.com
- Tony Heslop, BASF: 07720 598 932; tony.heslop@basf.com

International

- Marco Schmidt, BASF: +49 172 7437572; marco.schmidt@basf.com
- Kresimir Cule, BASF: +49 1520 9376000; kresimir.cule@basf.com
Basic Functions:

- Tools for architects, planners, producers
 PCM-calculator, material data, equivalent thickness
- PCM tips for builders and developers
 and weather depending cooling times
- Basics of PCM application:
 products, standards, links, tips on planning with PCM
Micronal® PCM App

- iOS and Android devices + desktop version
- Based on tool developed by Arup
- Doesn’t model but “looks up” data from TRNSYS simulations
- Calculates “equivalent thickness” (of concrete etc.)
- User settings e.g.
 - Climate zone (northern Europe = Manchester)
 - Room type: office, classroom, dwelling
 - Fixed floor area e.g. office 16.9m²
 - Fixed constructions e.g. floor, ceiling, walls, windows etc.
 - Orientation, window area (external gains)
 - Ventilation (night purge, mechanical, chilled ceiling)
 - Strategy: standard versus PCM + night cooling
 - Cooling load, cooling energy, energy cost
Micronal® PCM in Public Buildings
School in Luxemburg, Diekirch

Good thermal comfort in container lightweight construction without active cooling.

- New school building for the state of Luxemburg, town of Diekirch
- Construction: structural work steel container
- Interior work: dry construction and PCM
- Purely passive temperature management at 23°C on walls and ceilings using Knauf PCM SmartBoard®.
- Implementation: ALHO Systembau GmbH, Morsbach
- Monitoring: Fraunhofer Institute for Solar Energy Technology (ISE) in Freiburg
Micronal® PCM in School
Natural Ventilation Only

Simulation study: development of temperatures

- comparison of hourly operative room temperature
- small difference between scenario I and II: smart board in ceiling with 40m² constitutes just a small increase of thermal storage
- significant effect with scenario III

scenario I: room without PCM
scenario II: room with PCM only on the ceiling panels
scenario III: room with PCM in interior and exterior walls and the ceiling
Micronal® PCM in School
Natural Ventilation Only

Evaluation monitoring: phase change materials I

- smartboard 23 in walls and ceilings
- temperature range of phase change 23 to 25°C
- within the temperature range of the phase change:
 → ceiling with attenuated daily amplitude
 → delayed temperature increase and decrease of smartboard
Micronal® PCM in School
Natural Ventilation Only

Evaluation monitoring: thermal comfort II

- European Guideline DIN EN 15251:2007-08
- hourly room temperature during 7 am and 4 pm
- 3 comfort classes A, B and C according to user satisfaction
- comfort class A: very satisfied occupants
- few exceedance of comfort limit

thermal comfort in summer
EN 15251:2007-08

operative room temperature [°C]

running daily mean of ambient air temperature [°C]

room 202
room 201
Comparison between room with and without PCM-modified ceiling

→ thermal mass only helps if temperature cycles suffice
Active:
PCM-system in larger objects

- Strong energy impact on modern buildings need temperature control
- Technology change: From air conditioning units to cooling tower + groundwater cooling
- Active concept: Recooling with water
 - Concrete core activation
 - Capillary mats in PCM plaster

Example for modern glass architecture: Print Media Academie, Heidelberg
Micronal® PCM in Building Materials & Systems
First Commercialized Object Realizing Active Cooling Concept: Gotzkowskistrasse, Berlin

- Refurbished object:
 Gotzkowskistraße, Berlin, D
- Active control plus PCM with
 1,100 m² “maxit clima” – plasters
- 7 t Micronal® 23°C processed
Micronal® PCM in Building Materials & Systems Measurement Systems Gotzkowskistrasse, Berlin

Measurement equipment in the test rooms
Micronal® PCM in Building Materials & Systems
PCM-Plaster (5th floor) vs. Plaster (3rd floor)
Gotzkowski Street, Berlin

Air temp. without PCM: 18.8°C – 23.8°C
Air temp. with PCM: 19°C – 22°C

Source: TU Braunschweig
Micronal® PCM in Building Materials & Systems
SmartBoard™ as System Component
Active Cooling Ceiling by Ilkazell, Zwickau
Micronal® PCM in Building Materials & Systems
Office Renovation and Expansion in Karlsruhe, Germany

- Facade in Zero-Energy quality
- Extended daylight using
- High climatic and illumination comfort
- Pilot application of new technologies (LowEx)

ENGELHARDT & BAUER
Printing Company in Karlsruhe
Germany. Approx. 900m²
Micronal® PCM in Building Materials & Systems
Office Renovation & Expansion in Karlsruhe
Regenerative cooling concept with chilled ceiling

- Cooling by means of small dimensioned ground heat exchanger
 - Valuable solution for temperature control based on naturally available cooling source.
- No heat exchanger between ground cooling source and chilled ceiling
 - Minimized technical efforts, reduced running and maintenance costs.

Waste energy from production runs floor heating
Micronal® PCM in Building Materials & Systems
Office Renovation & Expansion in Karlsruhe
Chilled Ceiling Keeps Working Area Cool

- **Before renovation**
 - Specific electrical consumption in office area: 80 kWh/(m²a)
 - Specific heat consumption per year: 160 kWh/(m²a)

- **After renovation (calculated)**
 - New primary energy consumption: 54 kWh/(m²a)
 - Heat consumption 21 kWh/m²a; covered by waste heat from production
 - Removing of all existing chillers, installation of regenerative chilled ceiling